Investigation of some inequality.

https://www.linkedin.com/feed/update/urn:li:activity:6783649531583107072
Prove that if $a, b, c>0$ such that $a b c=1$ and $n \in \mathbb{N}, \lambda \geq 1$ then

$$
\frac{1}{a^{n}+\lambda}+\frac{1}{b^{n}+\lambda}+\frac{1}{c^{n}+\lambda} \leq \frac{3}{1+\lambda} .
$$

Solution by Arkady Alt, San Jose, California, USA.

First note that original problem need some correction related to λ.
Indeed, inequality $\sum \frac{1}{a^{n}+\lambda} \leq \frac{3}{1+\lambda}$ isn't holds for $\lambda=1, n=1$
because for $a=b=\frac{1}{5}, c=25$ we have
$\sum \frac{1}{a+1}=\frac{2}{\frac{1}{5}+1}+\frac{1}{25+1}=\frac{133}{78}>\frac{3}{2}$.
As it will be seen from further the value of natural n isn't matter but we should claim $\lambda \geq 2$.
Since $\sum \frac{1}{a^{n}+\lambda} \leq \frac{3}{1+\lambda} \Leftrightarrow \sum \frac{1}{\frac{a^{n}}{\lambda}+1} \leq \frac{3}{1+\frac{1}{\lambda}}$ then denoting $t:=\frac{1}{\lambda}$
and $x:=\frac{a^{n}}{\lambda}=a^{n} t$ we obtain that

$$
\left\{\begin{array} { l }
{ \sum \frac { 1 } { a ^ { n } + \lambda } \leq \frac { 3 } { 1 + \lambda } } \\
{ a b c = 1 , a , b , c > 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\sum \frac{1}{x+1} \leq \frac{3}{1+t} \\
x y z=t^{3}, x, y, z>0
\end{array}\right.\right.
$$

1.Necessary condition for t :

Let $x=y=\frac{1}{n}$ and $z=t^{3} n^{2}, n \in \mathbb{N}$ then we have $\frac{2 n}{1+n}+\frac{1}{1+t^{3} n^{2}} \leq \frac{3}{1+t} \Rightarrow \lim _{n \rightarrow \infty}\left(\frac{2 n}{1+n}+\frac{1}{1+t^{3} n^{2}}\right)=2 \leq \frac{3}{1+t} \Leftrightarrow t \leq \frac{1}{2}$.
2. Now we will prove that for any positive $t \leq \frac{1}{2}$ holds inequality

$$
\begin{equation*}
\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z} \leq \frac{3}{1+t} \text {, where } x, y, z>0 \text { and } x y z=t^{3} . \tag{1}
\end{equation*}
$$

But first we will prove that $\frac{1}{1+x}+\frac{1}{1+y} \leq \frac{2}{1+\sqrt{x y}}, x, y>0$ and $x y \leq 1$.
Indeed, $\frac{1}{1+x}+\frac{1}{1+y} \leq \frac{2}{1+\sqrt{x y}} \Leftrightarrow \frac{2+x+y}{1+x+y+x y} \leq \frac{2}{1+\sqrt{x y}} \Leftrightarrow$
$2+x+y+2 \sqrt{x y}+\sqrt{x y}(x+y) \leq 2+2 x+2 y+2 x y \Leftrightarrow$
$2 \sqrt{x y}(1-\sqrt{x y}) \leq(x+y)(1-\sqrt{x y}) \Leftrightarrow$
$(1-\sqrt{x y})(x+y-2 \sqrt{x y}) \geq 0$.
Coming back to (1) we assume that $x y=\min \{x y, y z, z x\}$.
Then $x^{3} y^{3} \leq x y \cdot y z \cdot z x=t^{6} \Leftrightarrow x y \leq t^{2}$ and denoting $a:=\sqrt{x y}$,
we obtain $0<a \leq t, z=\frac{t^{3}}{a^{2}}$ and inequality $\frac{1}{1+x}+\frac{1}{1+y} \leq \frac{2}{1+a}$
which holds because $a<1$. Hence we have
$\frac{3}{1+t}-\left(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\right) \geq \frac{3}{1+t}-\frac{2}{1+a}-\frac{a^{2}}{a^{2}+t^{3}}=$
$\frac{(t-a)^{2}(a(2-t)+t(1-2 t))}{(1+a)(1+t)\left(a^{2}+t^{3}\right)} \geq 0\left(0<t \leq \frac{1}{2}\right.$ implies $\left.a(2-t)+t(1-2 t) \geq 0\right)$.

Since inequality $\sum \frac{1}{x+1} \leq \frac{3}{1+t}$ holds for any $x, y, z>0$ such that $x y z=t^{3}$ iff $0<t \leq \frac{1}{2} \Leftrightarrow \lambda \geq 2$ then corrected version of the problem must be:

Prove that if $a, b, c>0$ such that $a b c=1$ and $n \in \mathbb{N}, \lambda \geq 2$ then

$$
\frac{1}{a^{n}+\lambda}+\frac{1}{b^{n}+\lambda}+\frac{1}{c^{n}+\lambda} \leq \frac{3}{1+\lambda} .
$$

